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Abstract - A novel color chaos-based image 

encryption scheme with a permutation-diffusion 

mechanism is proposed. The permutation operation 

adopts a half-pixel-level interchange permutation 

strategy between different R, G, and B color channels 
to replace the traditional confusion operations. The 

pixel swapping between the higher 4-bit plane and the 

lower 4-bit plane of the R, G, and B channels 

improves the conventional permutation efficiency 

within the entire plain image and changes all the 

pixel values of R G, and B components. The 

multimodal skew map is applied to yield a pseudo-

random gray value sequence in the diffusion 

operations to enhance security. Simulations have 

been carried out, and the results confirm the superior 

security of the proposed image encryption scheme. 
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I. INTRODUCTION 

 

        With the development of information technology 

and the Internet, more and more multimedia 

information, such as color images, mp3, and video, 

are used in daily life. However, unauthorized access 

or modification to private digital information happens 
every day and has become a serious issue of digital 

information. However, recent research found that 

traditional cryptosystems like Data Encryption 

Standard (DES) and International Data Encryption 

Algorithm (IDEA) may not be suitable for image 

encryption due to some intrinsic features of images 

such as bulky data capacity, high redundancy, and 

strong correlation between pixels  [1, 2].  

In the last decades, chaos-based image encryption 

has attracted great attention from scholars thanks to 

chaotic systems’ special characteristics, such as 
ergodicity, pseudo-randomness, and sensitivity to 

parameters and initial conditions [3-7]. Most of the 

existing chaos-based image encryption schemes 

employ a typical permutation-diffusion architecture. 

One encryption round includes several rounds of  

 

 

 

confusion and one round of diffusion processes. 

Fridrich initially proposed this architecture in 1998 

[3]. In a confusion operation, two-dimensional chaos 

systems are usually employed to modify every pixel's 

location, while in the diffusion phase, the value of all 
the pixels is systematically changed. Generally, for an 

ideal cryptosystem, some basic requirements should 

be satisfied. For example, it should be sensitive to 

cipher keys; the keyspace should be large enough to 

resist brute-force attack; the permutation and 

diffusion processes should possess good statistical 

properties to frustrate statistical attack, differential 

attack, known-plaintext attack, chosen-plaintext 

attack, etc. However, the traditional permutation-

diffusion architecture with fixed key streams is 

blamed for one big drawback. In their papers [8, 9], 
Li et al. pointed out that the permutation and diffusion 

processes become independent if one homogeneous 

plain image with an identical pixel gray value is 

encrypted. As a result, such a kind of image 

encryption scheme can be attacked by the following 

steps: (1) a homogeneous image with an identical 

pixel gray value is applied to remove the permutation 

effect; (2) the key streams of the diffusion process 

can be obtained by known-plaintext, chosen-plaintext 

or chosen-ciphertext attacks; (3) the remaining 

cipher-image can be then regarded as the output of a 

kind of permutation-only cipher, which has been 
shown insecure and can be cryptanalysis successfully. 

Image encryption schemes with conventional 

permutation-diffusion architecture have been 

analyzed or shown to suffer from security drawbacks 

[10-16].  

To overcome the shortcomings such as small key 

space and weakly secure permutation-diffusion 

mechanism in chaos-based ciphers, many researchers 

investigated novel chaos-based cryptosystems with 

improved chaotic maps, large keyspaces, and good 

permutation-diffusion mechanisms, etc. In [17], Ye 
proposed a novel image encryption scheme with an 

efficient permutation-diffusion mechanism. In both 

the permutation and diffusion stages, generalized 

Arnold maps with real number control parameters are 

applied to generate pseudo-random sequences and 

enlarge the keyspace greatly. A two-way diffusion 

process is executed to improve the security of the 
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diffusion function. The cipher constructed in [17] 

shows good security and performance, including huge 

keyspace, efficient resistance against statistical attack, 

differential attack, known-plaintext, and chosen-

plaintext attack. Zhou et al. adopted new chaotic 
systems by integrating the tent, logistic, and sine 

maps into one single system to produce the pseudo-

random sequence [18, 19]. The intertwining logistic 

map and reversible cellular automata were utilized to 

design a novel image encryption scheme presented by 

Wang in [20]. This encryption scheme performs at bit 

level considering higher four bits of each pixel value. 

Some other novel image encryption schemes using 

bit-level permutation operation were proposed 

recently to improve the security issue of chaos-based 

image encryption schemes. 

Each gray pixel value is usually decomposed into 
8-bit planes for 256 gray-scale images for the bit-

level permutation. The bit-level permutation not only 

rearranges the pixel positions but also modifies the 

gray pixel values [21, 22]. Therefore certain diffusion 

effect has been achieved in the permutation process. 

Zhang et al. proposed a novel image encryption 

scheme using lightweight bit-level confusion and 

cascade cross circular diffusion [23] using superior 

characteristics of bit-level operation and the intrinsic 

bit features of images. They also applied an expand-

and-shrink strategy at the bit-level to shuffle the 
image with a reconstructed interpermuting plane [24]. 

All the proposed image encryption schemes perform 

better than the traditional permutation-diffusion 

structure operating at the pixel level. However, there 

exists one flaw in all bit-level-based image encryption 

schemes. Although the bit-level confusion operations 

can change the gray pixel values, they consume much 

execution time to get the eight-bit planes.  

This paper proposes a novel color chaos-based 

image encryption algorithm using a half-pixel-level 

interchange permutation strategy. We first extract the 

higher 4-bit plane part RH/GH/BH and the lower 4-
bit plane part RL/GL/BL from the R channel, G 

channel, and B channel. And then interchange the 

pixel values between RH and GL, the values between 

GH and BL, and BH and RL, respectively. A 

generalized Arnold map controls the interchange 

positions. The interchange strategy between the 

higher and lower plane parts will obtain two merits. It 

improves the conventional permutation efficiency 

within the plain image and changes all the pixel 

values of the entire image. To enlarge the keyspace 

and improve the diffusion effect, we adopt a 
multimodal skew tent map to generate a pseudo-

random intensity sequence used to modify the pixels' 

color intensity values sequentially. Experiments are 

carried out thoroughly with detailed analyses, 

including key space analysis, key sensitivity analysis, 

statistical analysis, differential attack analysis, etc. 

All the results demonstrate that the proposed image 

encryption scheme possesses a large keyspace to 

efficiently frustrate brute-force attacks and other 

common various kinds of attacks.  

The rest of the paper is organized as follows. 

Section II briefly introduces the logistic map and 

multimodal skew tent map with M tents. Section III 
introduces interpermuting planes. Section IV 

proposes a novel image encryption scheme composed 

of one permutation process and one diffusion process 

based on a generalized Arnold map and multimodal 

skew tent map. The corresponding decryption process 

is also presented in Section IV. The security and 

performance of the proposed image encryption 

algorithm are evaluated via detailed analyses and 

experiments in Section V.  Section VI draws some 

conclusions.  
 

II. CHAOTIC  MAPS 
 

A. Logistic map 

In the proposed algorithm, a logistic map is used to 

generate the control parameters of the generalized 

Arnold map, which are used to perform the 

interchange permutation between higher-bit plane 

parts and lower-bit plane parts. The Logistic map can 
be presented in Eq. (1) [27, 28].  

1 (1 )n n nx x x   ,                             (1) 

where (0 1)nx   (0 4]  and. It is well known that 

when (3 9 4]    the logistic map undergoes chaotic 

and the pseudo-random sequence between 0 and 

1can be obtained.  

B. The multimodal skew tent map 

The unimodal skew tent map is defined by Eq. (2) 

1

if [0 ]

(1 ) (1 ) if ( 1]

n n

n

n n

x a x a
x

x a x a


    
 

      
        (2) 

where [0 1]x  is the system's state, and 

(0 1)a  what is the system parameter? There exist 

some good dynamical features in the skew tent map 

[29]. We generalize the unimodal skew tent map (2) 

to the multimodal skew tent map [0 1] [0 1]T      

defined by  

2 2 1 2 2 2 1

1

2 2 2 2 2 1 2 1 2 2
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n i i i n i i
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i n i i n i i
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 



    

      
 

      

     (3) 

where 0, , 1i M  , 0 1 2 1 20 M Ma a a a     =

1 and M  is referred to the number of tents. See Fig. 

1(a) for the case of 3M  , a = [0, 0.16, 0.3, 0.51, 

0.68, 0.78, 1.0] .  

The orbit of 0 0 367x    generated by system (3) is 

0{ ( ) 0 1 }k

kx T x k     , shown in Fig. 3(a) for  a = 

[0, 0.16, 0.3, 0.51, 0.68, 0.78,1.0], 3M  . Its 

waveform is quite irregular, implying the system’s 

chaotic feature. To illustrate the distribution of the 

orbit points { 0 1 20000}kx k     , we plot the 

histogram in Fig. 3(b). It can be seen that the points 

of the orbit spread more or less evenly over the unit 
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interval. Multimodal skew tent map possesses 

desirable auto-correlation and cross-correlation 

features as well. The trajectory is applied to calculate 

the correlation coefficients, shown in Figs. 3(c)-(d) 

respectively. The orbits of and calculate the cross-

correlation coefficients
0 0 367x   0 0 368y   . The 

control parameter 
1 2 1Ma a   and the initial 

condition
0x  can be regarded as cipher keys if the 

multimodal skew tent map is applied to design image 

encryption schemes. 

 
Fig. 1  The diagram of a multimodal skew tent map.  

  
  (a)  

 
  (b)   

 
(c)   

 
 (d)  

        Fig. 2. Orbits derived from the considered 

multimodal skew tent map 

with [0 0 16 0 3 0 510 68 0 781 0]a        . (a) The 

chaotic orbit of 
0 0 367x   ; (b) Histogram of a 

typical orbit of length 20000; (c) The auto-correlation; 

(d)The cross-correlation 

 

The probability density ( )x for multimodal skew 

tent map on [0, 1] is given by [30]:  

                    0

1 if (0 1)
( )

0 otherwise

x
x

   
 

 
                  (4) 

This fact has been illustrated numerically in Fig. 3(b). 

The existence and unique value of the Lyapunov 

exponent also follow from the following theorem. It 

has been shown that for the multimodal skew tent 

map (3) with the constant probability density ( ) 1x  , 

the Lyapunov exponent of (3) is (see [30] for more 

details)  

1 1 2 2 2 1 2 1 2 2ln ln ln lnM M M Mp p p p p p p p               

  It is always larger than zero, implying the dynamic 

system is always chaotic. 

For 3 [0 0 16 0 3 0 510 68 0 781 0]M a         , we 

obtain 
 

1 2 3 4 5 60 16 0 14 0 21 0 17 0 1 0 22p p p p p p                 .   

So 1 7608   . It is usually larger than the Lyapunov 

exponent for the unimodal skew tent map (2). As a 

matter of fact, for the unimodal skew tent map (1), the 

largest Lyapunov exponent ln 2 0 6931  occurs in 

the extreme case 0 5a   . It implies that the 

multimodal skew tent map (3) is in a stronger sense 

chaotic and, therefore, can perform better data mixing, 

which makes it a better choice for designing 

encryption schemes than the unimodal skew tent map. 
The unimodal skew tent map is widely applied to 

generate pseudo-random sequences in chaos-based 

image encryption schemes. Multimodal skew tent 

map has been shown to possess good chaotic natures, 

such as pseudo-randomness, ergodicity, and desirable 

auto-correlation and cross-correlation features [30]. 

We apply a multimodal skew tent map to enlarge the 

cipher keyspace as it has more choices of control 

parameters. 
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III.  THE INTERPERMUTING PLANES 
 

      In traditional chaos-based image encryption 

algorithms, two steps are performed alternatively, as 

shown in Fig. 3. In the confusion phase, two-

dimensional chaotic maps are usually employed as 

pseudo-random number generators, and a mapping 

rule from sequential positions to pseudo-random 

positions is defined. The pixels are mapped from a 

plain image to a pre-defined new blank plane, which 
becomes the confused image after the confusion 

operation. The two planes are the plain image and the 

blank plane, and the mapping operation is performed 

in a one-way manner, as shown in Fig.4.   

In Fig. 4, A and B represent two adjacent pixels in 

the plain image, while A' B' and are the two 

corresponding random pixels in the blank plane. In a 

traditional confusion phase, one pixel (e.g., pixel A in 

Fig. 4(a)) is mapped from the original plain image to 

a random position in the pre-defined blank plane (e.g., 

the pixel A' in Fig. 4(b)). Once all the pixels in the 
plain image have been mapped to the blank plane, the 

newly obtained plane becomes the confused image, 

and the confusion operation finishes. In contrast, in 

confusion operations based on interpermuting planes, 

the two planes are both parts of the plain image, and 

confusion operations are performed bi-directional. 

The two random positions in the two interpermuting 

planes are exchanged rather than simply moving one 

pixel from the original plain image to a pseudo-

random position in the blank plane, as shown in Fig. 5. 

The two interpermuting planes can be obtained by 

combining different bit planes for a gray image or 
different color channels for an RGB image. A two-

dimensional chaotic map is used to define the 

mapping of a pixel from its regular position ( )x y to a 

new pseudo-random position ( )x y  . In other words, 

when confusion is applied by using interpermuting 

planes, the two interpermuting planes are both parts 

of the plain image, and the confusion involving these 

two planes is performed by exchanging the pixel 

located at position ( )x y in-plane 1  and the pixel 

located at position ( )x y  in-plane 2  as depicted 

diagrammatically in Fig.5. Referring to Fig.5, if 

plane1  and plane 2 are any two of the color channels 

of an RGB image, the pixels A, B, A' and B' are all 

8-bit pixels. If plane 1 and plane 2 are obtained by 

combining different bit planes of a gray image or one-
color channel for an RGB image, interpermuting 

plane 1 would contain the higher 4-bit planes. 

Interpermuting plane 2 would contain the lower 4-bit 

planes of the gray image or some certain color 

channel component, in which case A, B, A' and 

B' should be special units that contain 4-bit 

information [25]. 

 
Figure 3. The traditional architecture of chaos-based image 

encryption. 

 
Figure 4. Traditional confusion operation. 

 
Fig. 5  Interpermuting-plane confusion operation. 

 

    The swapping operation between the two 

interpermuting planes is then performed as follows. In 

Fig. 5, taking pixel A, for example, A's coordinate 

( )x y is. The corresponding random position is then 

calculated using a two-dimensional chaotic map and 

determined to be the position ( )x y  . First, pixel A is 

moved from position ( )x y in-plane 1  to ( )x y  in-

plane 2 , similar to traditional confusion operations. 

Meanwhile, the pixel located ( )x y  in the in-plane 2  

is moved back to the position ( )x y 1 in the plane. 

When one random position is calculated, two pixels 

(or two units that contain bit information of different 

bit planes) are permuted between the two planes. The 

pixel in plane 1 is confused using an ordinary two-

dimensional chaotic map and moved from its regular 

position to a random one. 

Meanwhile, the pixel in plane 2 is moved from the 
random position in-plane 2  back to the ordinary 

position in-plane1 , which is the effect of confusion 

using a reverse two-dimensional chaotic map. The 

reverse chaotic map is applied first in [4]. Therefore, 

the confusion approach proposed in this paper can be 

considered a combination of two known confusion 

techniques, i.e., those based on ordinary and reverse 

two-dimensional chaotic maps, but with the 

additional use of two interpermuting planes for 

swapping purposes.  

There are two calculation steps in the confusion 
phase. The first step calculates the new position of the 

pixel (the most time-consuming step), and the second 

step moves the pixel from one memory address to the 

other [23]. In the proposed confusion operation based 
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on interpermuting planes, when one random position 

is calculated, ordinary and reverse random mapping 

are used as a swapping strategy to simultaneously 

permute the two pixels between the two 

interpermuting planes, which can save around half of 
the confusion time.  

The success of the newly proposed confusion 

scheme would, therefore, to a large extent, depend on 

finding a way to generate two interpermuting planes 

from the existing image. For an image with 256 gray 

levels, the two interpermuting planes could be 

obtained by dividing the 8 -bit planes into two parts. 

For example, the higher 4-bit plane part and the lower 

4-bit plane part could either be treated as 

interpermuting plane 1 or plane 2, respectively, or the 

four odd-numbered bit planes and the four even-

numbered bit planes could be treated as the two 

interpermuting planes, respectively. For an RGB 

color image, there are six naturally interpermuting 

planes, three higher 4 -bit planes, and three lower 4 -

bit planes of the R, G, and B channels, respectively. 

Alternatively, the different interpermuting planes 
could also be obtained by using a distinct 

combination of different bit planes or color channels. 

IV.  THE PROCESS OF THE IMAGE 

ENCRYPTION SCHEME 
 

       In this section, the proposed encryption algorithm 

is proposed. The flowchart of the encryption process 

is shown in Fig. 6. The encryption algorithm consists 
of two processes: permutation and diffusion. We read 

an 8-bit color plane image P  with size H W . In this 

paper, we restrict the plain images with equal height 

H and width W ; that is, H W The plain color 

image is modeled by a three-dimensional matrix 

sized 3H W   whose elements belong to the 

integers between 0 and 255, denoting the intensity 

values of different color channel components.  

 
Fig. 6 Flowchart of the encryption algorithm. 

A. Permutation process 

In the permutation process, we first extract the 
higher 4-bit planes and the lower 4-bit planes from 

the R, G, and B channels and denote them as 

interpermuting planes RH, RL, GH, GL, BH, and BL, 

respectively. And then, we will exchange the pixels 

between two interpermuting planes using a 

generalized Arnold map, defined by Eq. (5).  

       
1

 mod  
1

x p x
H

y q pq y

    
     

     
                  (5) 

where 0 1 2 1p q H      , p  and q  are the control 

parameters of generalized Arnold map and function 

“  mod  x H represents the remainder after x divided 

by H . ( )x y  is the original position of the higher 

plane while ( )x y  is the pseudo-random position 

governed by the generalized Arnold map. Exchanging 

the pixel value at the location ( )x y of the higher 4-

bit plane part extracted from one color channel with 

the pixel value at the location ( )x y  of the lower 4-

bit plane part from another color channel. The 

detailed permutation process is depicted as follows.  

Step 1. Generate six control parameters 

( )p i ( )q i ( 1 2 3i    ) by Eq. (1).  0x Are the 

parameters as initial secret keys.  

Step 2. Set the higher 4-bit plane part of the R 

channel to be interpermuting plane 1 and the lower 4 -

bit plane of the G channel to be interpermuting plane 

2.  

Step 3. For each pixel in plane 1, a random 

position ( )x y  is calculated by Eq. (5) with 

parameters (1) (1)p q . Then exchange the two pixels 

by locating ( )x y them in interpermuting plane 1 and 

( )x y  interpermuting plane 2 until all the pixels have 

been confused. We finish the interchange permutation 

between RH and GL.  

Step 4. Define the higher 4-bit plane of the G 

channel as interpermuting plane 1 and the lower 4-bit 
plane of the B channel as interpermuting plane 2, and 

repeat Step 3 with parameters (1) (1)p q replaced by 

parameters (2) (2)p q . We then finish the interchange 

permutation between GH and BL.  

Step 5. Define the higher 4-bit plane of B channel 

as interpermuting plane 1 and the lower 4-bit plane of 

R channel as interpermuting plane 2, and repeat Step 

3 with parameters (1) (1)p q replaced by 

parameters (3) (3)p q . We then finish the interchange 

permutation between BH and RL.  

Step 6. Integrate the exchanged matrices pairs to be 

three permutated color components , ,R G B :  

( ) ( ) ( ) 16

( ) ( ) ( ) 16

( ) ( ) ( ) 16 0 1 1

R i j RL i j RH i j

G i j GL i j GH i j

B i j BL i j BH i j i j H

      

      

             

 

 

B. Diffusion process 

In the diffusion phase, the values of all the pixels 

are systematically modified. First, the confused R, G, 

and B channels are transformed into a vector. The R, 
G, and B channels are transformed into three vectors, 

respectively, and each of them has H W numbers. 

After that, the confusing red, green, and blue color 

component matrices , ,R G B  are integrated into a 
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vector V with length 3HW . The diffusion process is 

described as follows.   

Step 1. Set the values of M the control 

parameters ( 1 2 1)ia i M    and the initial 

condition
0y . Iterate the multimodal skew tent map (4) 

100 times and reject the transient 100 points to avoid 

the harmful effect. We reset 
0y to be

100y . 

Let 1n  1s  ,  

Step 2. Iterate (4) for s  rounds with initial 
0y to 

get y . The keystream element ( )k n  is calculated by 

 14( ) mod( ( 10 ),256)k n floor y  .                   (6) 

The intensity values are modified sequentially 

according to Eq. (7) ( )V n ( )c n ( 1)c n . The intensity 

values of the currently operated pixel in the confused 

vector V , output cipher-pixel, and previous cipher-

pixel, respectively. We note that an initial value seed 

(0)c is required for a well-defined calculation. 

( ) ( ) mod( ( ) ( 1), 256).c n V n k n c n             (7) 

Step 3. Compute s 1 ( ( ),2)s mod c n  by. Let 

1n n  and reset 
0y to be y . Return to Step 2 until 

n it reaches 3 1HW  .  

Step 4. Convert the resulted vector c to one color 

cipher image with height H and widthW .  

 
The complete diffusion process is composed of 

Steps 1 to Step 4. After the diffusion process, the 
yielded vector c is transformed into three two-
dimensional arrays modeling the cipher-image's red, 
green, and blue color components. 

 

C. The process of image decryption scheme 
The decryption procedure is the reverse process of 

the encryption algorithm, and the flowchart of the 

decryption process is shown in Fig. 7. The entire 

decryption procedure is outlined as follows. 

Step 1. Extract the R, G, and B channels of the 

cipher-image, transform them into three length 

HW vectors, then integrate them into one vector 

c with length 3HW . Set the values of M the control 

parameters ( 1 2 1)ia i M    and the initial 

condition 0y . Iterate the multimodal skew tent map (4) 

100 times and reject the transient 100 points to avoid 

the harmful effect. We reset 0y to be 100y . 

Let 1n  1s  , Us do the loop consisting of Step 2-

Step 3, in which an initial value (0)c  is required and 

can be regarded as one part of the cipher keys. 

 

 
Fig. 7  Flowchart of the decryption algorithm. 

 

Step 2. Iterate (4) for s rounds with initial 
0y to 

get y . The current keystream element ( )k n  is 

calculated by Eq. (8).  
14( ) mod( ( 10 ),256)k n floor y  .                      (8) 

The confused vector V is obtained according to Eq. 

(9), where ( )V n ( )k n ( )c n ( 1)c n , are the currently 

operated pixel in the confused vector, temporal 

keystream element, output cipher-pixel, and previous 

cipher-pixel, respectively. 

( ) ( ) mod( ( ) ( 1), 256).V n c n k n c n               (9) 

Step 3. Compute s 1 ( ( ),2)s mod c n  by. Let 

1n n  and reset 
0y to be y . Return to Step 2 until 

n it reaches 3 1HW  .  

Step 4. Extract the R, G, and B channels' pixel 

values from the confused vector V  orderly and 

convert them into two-dimensional matrices denoted 

as R, G, and B, respectively. 

Step 5. Generate six chaotic values 

( )p i ( ), 1,2,3q i i  by Eq. (1) with the cipher 

keys  0x , 

Step 6. Set the higher 4-bit plane of R to be 

interpermuting plane 1 and the lower 4-bit plane of G 

to be interpermuting plane 2. For each pixel in plane 

1, a random position ( , )x y  is calculated by Eq. (5) 

with (1), (1)p q . Then exchange the two pixels at 

locating ( , )x y in interpermuting plane 1 and ( , )x y   

interpermuting plane 2 until all the pixels have been 

exchanged. 

Step 7. Define the higher 4-bit plane of G as 

interpermuting plane 1 and the lower 4-bit plane of B 

as interpermuting plane 2; repeat the same operation 

in Step 6 with control parameters (1), (1)p q (2), (2)p q . 

Step 8. Define the higher 4-bit plane of B as 

interpermuting plane 1 and the lower 4-bit plane of R 

as interpermuting plane 2; repeat the same operation 

in Step 6 with control parameters (1), (1)p q (3), (3)p q . 

Step 9. Form the yielded  R, G, and B channels' 

two-dimensional matrices to be three-dimensional 

matrices modeling the plain color image. 

 

 

 

 



Ruisong Ye , Li Liu  / IJCTT, 67(3), 53-64, 2019 

 

59 

V. PERFORMANCE ANALYSIS 
 

        According to the basic principle of cryptology 

[31], a good encryption scheme requires sensitivity to 

cipher keys, i.e., the ciphertext should closely 

correlate with the keys. An ideal encryption scheme 

should have a large keyspace to make brute-force 

attacks infeasible; it should also resist various attacks 
like statistical attacks, differential attacks, etc. In this 

section, some security analyses have been performed 

on the proposed image encryption scheme, including 

the most important ones like key space analysis, 

statistical analysis, and differential analysis. All the 

analyses show that the proposed image encryption 

scheme is highly secure.  

A. Experimental results 

       We use MATLAB R2010b to run the 

encryption and decryption process in a computer with 

1 70 GHz CPU, 4 GB memory, and Microsoft 

Windows 8  operating system. All the dates in this 

article are obtained under this circumstance. The plain 

image we choose in the simulation is the color image 

Lena.bmp of size 256 256 . The cipher keys are 

 = 3 999 , (0)c = 78 , 
0x = 0 36 , 

0y = 0 375 , 

a =[ 0 , 0 16 , 0 3 , 0 51 , 0 68 , 0 78 ,1 0 ].  Fig.8 shows 

the encryption result. 

    
  (a)The plain image Lena.    

 
  (b)The cipher-image of Lena. 

Fig. 8  Encryption result. 

B. Statistical analysis 
      It is well known that the statistical property is 

enormously vital, and an ideal image algorithm 

should be robust against any statistical attacks. 

Histogram and correlation of two adjacent pixels are 

two important indicators of statistical analysis.  

Histogram. Histograms of plain-image and cipher-

image are plotted, through which we can intuitively 

see the number of pixels of each value. A good image 

algorithm should make the histogram of the cipher-

image as flat as possible. The histograms of Lena and 

its cipher-image are shown in Fig.9. Fig.9(a)-(c) are 

the histograms of R,G,B components of plain-image 

Lena; Fig.9(d)-(f) are the histograms of R,G,B 
components of cipher-image. 

Correlation of adjacent pixels. Generally 

speaking, the two adjacent pixels of a plain image 

would come near each other. Adjacent pixels from the 

plain image of Lena and its cipher image are selected 

in the horizontal direction, vertical direction, and 

diagonal direction, respectively, and the correlation 

coefficients xyr  of each pair are calculated using the 

following equations [32] :  

( ) ( ( ))( ( ))cov x y E x E x y E y    , 

( )

( ) ( )
xy

cov x y
r

D x D y


                                      (10) 

where x  and y are values of the two adjacent pixels 

in the 

image 1

1
( )

N

iN i
E x x


  21

1
( ) ( ( ))

N

iN i
D x x E x


  .  

 

   
(a) 

 
(b) 

 
  (c) 
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(d) 

 

 
(e) 

 
 (f) 

Figure 9. (a)-(c): histograms for , ,R G B  components 

of Lena; (d)-(f): histograms for , ,R G B components 

of cipher-image. 

 

The correlations between adjacent pixels of plain 

images and cipher images are given in Table 1. From 

Table 1, we can find no detectable correlations 

between the plain image and its corresponding cipher 

image. The correlation coefficients of adjacent pixels 
are significantly deduced in our proposed scheme, 

and the proposed encryption scheme shows perfect 

correlation performance. 

 
Table 1. Correlation coefficients of adjacent pixels in the 

plain and cipher images. 

Correlation 

between  

adjacent pixels  

Plain image   Cipher image   

Red  Green  Blue   Red  Green  Blue   

Horizontal  0.9460  0.9465  0.9046   0.0037  0.0006  0.0001   

Vertical  0.9720  0.9729  0.9465   -0.0041  0.0002  0.0012   

Diagonal  0.9212  0.9236  0.8677   0.0004  0.0006  0.0008   

 

Furthermore, we introduce a new statistic index to 

reflect the effect of the cipher-image, which is the co-

occurrence histogram [33], and we depict it as 

follows. The co-occurrence histogram in the 

horizontal direction is defined by Eq.(11).  

1

1

1 1

( ) ( ( ) ) ( ( 1 ) ) 0 1 255
n n

x y

co i j g x y i g x y j i j 


 

               (11) 

The co-occurrence histogram in the vertical direction 

is defined by Eq.(12).  
1

2

1 1

( ) ( ( ) ) ( ( 1) ) 0 1 255
n n

x y

co i j g x y i g x y j i j 


 

              (12) 

where ( )g x y  is the pixel value at the location ( )x y ? 

If x = y  ,then ( ) 1x y   , otherwise, ( ) 0x y   . 

The detailed co-occurrence histograms of the plain-

image and cipher-image are shown in Fig.10. 

 
   (a)       

 
 (b) 

  
  (c)        

 
 (d) 
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  (e)  

 
 (f) 

  
  (g)    

  
 (h) 

 
  (i)   

 
 (j) 

   
  (k)  

 
 (l) 

 

Figure 10. Co-occurrence histograms of plain image 

and cipher image. (a), (b), (e), (f), (i), (j) are the 

vertical and horizontal co-occurrence histograms of R, 

G, and B components of Lena, respectively; (c), (d), 

(g), (h), (k), (l) are the vertical and horizontal co-

occurrence histograms of R, G, B components of 

cipher-image respectively.  

Besides, the information entropy Eq. (13) 

correlated with co-occurrence is introduced to 

measure the uniformity level of the two-dimension 

histogram. The distribution of the pixel space will be 

more uniform when the value of information entropy 

is bigger. The simulation results are shown in Table 2.  
255 255

0 0

( ) ( )
( ) ln( ) 1 2

( 1) ( 1)

l l

l

i j

co i j co i j
H co l

n n n n 

 
     

 
     (13) 

Table 2. Co-occurrence histogram entropy. 

Information  Plain image  Cipher image   

entropy  Red  Green  Blue  Red  Green  Blue   

Horizontal  8.416  8.722  8.271  10.515  10.511  10.514   

Vertical  8.088  8.340  7.954  10.511  10.515  10.515   

 

Information entropy analysis. In [34], entropy 

was proposed by Shannon to measure the randomness 

and unpredictability of an information source 

quantitatively. The mathematical formula for the 
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entropy of a message source is defined in Eq. (14), 

where s the source N  is the number of bits to 

represent the symbol 
is ( )iP s and is the probability of 

the symbol
is . 

2 1

2

0

( ) ( ) log ( ).

N

i i

i

H s P s P s




                           (14) 

For a purely random source emitting 2N
symbols, the 

entropy is N . Therefore, the upper-bound entropy of 

an effective cipher-image with 256 Gray levels is 8. 

Such expected value will be achieved when the 

cipher-image is uniformly distributed, i.e., the image 

has a complete flat histogram.  

The results of the information entropy analysis for 

R, G, and B channels of the plain-image and cipher-

image are listed in Table 3. The results illustrate that 

the entropies of the cipher image are very close to the 

upper-bound value 8. Therefore, we can conclude that 

there is little possibility of eavesdropping and our 

encryption scheme has high robustness against 

entropy attacks. 

Table 3. Entropy values of a plain image and its cipher image. 

 Plain image   Cipher image 

 Red  Green  Blue  Red  Green  Blue   

Entropy 7.2763  7.5834  7.0160  7.9971  7.9971  7.9976  

 

C. Differential attack analysis. 

The number Pixel Change Rate(NPCR) and 

Unified Average Changing Intensity(UACI) are 

usually used to measure the sensitivity of the 

cryptosystem to a slight modification of the plain 

image. In an ideal situation, a slight modification of 
the plain image will lead to a completely different 

cipher image, indicating its resistance to differential 

attack. Otherwise, it would have been possible to 

obtain the correlation between the plain image and the 

cipher image by a series of attacks of this nature. 

NPCR and UACI are defined by Eq. (15). 

,

( , )

100%.
i j

D i j

NPCR
W H

 



  

1 2( ) ( )1
[ ] 100

255i j

c i j c i j
UACI

W H 

    
  


     (15) 

where 1c 2c and are two images of the same 

size W H . If 1 2( ) ( )c i j c i j   , then 

( ) 1D i j  otherwise, ( ) 0D i j   

We randomly select 3  positions from R, G, and B 

channels with the pixel gray added1 , respectively, to 

test the influence of one-pixel change on the whole 

cipher image. We get the values of NPCR and UACI 

each time, then take the average of them. Table 4 

gives NPCR and UACI performances of the proposed 

image encryption scheme. It shows clearly that the 
proposed scheme reaches very good NPCR and UACI 

performance when encrypted in just one round. The 

results show that the proposed image encryption 

method is sensitive to plaintext, which is important to 

resist differential attacks.  

Table 4. Differential attack analysis.  

  Red  Green  Blue  average   

NPCR  99.5987  99.6185  99.5972  99.6048   

UACI 33.5033  33.4798  33.4164  33.4665   

D. Keyspace analysis 

     The keyspace is the total number of different 

keys used in a cryptosystem. In [35], it is suggested 

that the keyspace of a chaos-based image 

cryptosystem should be better larger than
1002 . As to 

the proposed scheme, there are two keys in the 

permutation phase, say  0x and. The multimodal 

skew tent map's initial value
0y (0)c  and control 

parameter ( 1 2 1)ia i M   serve as the proposed 

cryptosystem's primary key in the diffusion phase. 

The keyspace wholly depends on the encryption 

processes, denoted as Key - P . According to the 

IEEE floating-point standard [36], the computational 

precision of the 64 -bit double-precision number is 

about 1510 . In our proposed algorithm, the range  is 

within 1510 0x . Because can be anyone among 

those 1610  possible values within (0 1) , and so as 00x  

and (ia i 1 2 1)M  . As to H  gray-level image, 

the valid values of ( 1)c  H is. For the case M = 3 , 

we can take an example, 

3 999   0 0 375y   0x =0.36, 

a =[ 0 0 16 0 3 0 51 0 68 0 78 , 1 0 ], (0)c =78, then 

the keyspace of the proposed cryptosystem is  
15 16 16 16 16 16

16 16 429

10 10 10 10 10 10

               10 10 256 2

Key P      

   
, 

Which satisfies the security requirement suggested in 

[35] and is large enough to resist brute-force attacks.  

E. Key sensitivity analysis 

        Key sensitivity of an image cryptosystem can 

be observed in two aspects: (i) completely different 

cipher images should be produced when slightly 

different keys are applied to encrypt the same plain 

image; (ii) the cipher image cannot be correctly 

decrypted even tiny mismatch exists in decryption 
keys [37]. Concerning the symmetrical characteristic 

of the secret key, we typically test the sensitivity 

 0x (0)c 0y (2)a (5)a to avoid redundancy. The 

plain image is respectively encrypted with one master 

cipher and six cipher keys which have only a slight 

change in any one of six parts of the master cipher 
key. The following cipher keys are used to perform 

the simulation.  

Master cipher key:  

Mkey(  , 0x (0)c 0y (2)a (5)a ); 

Six slightly different keys:  

Key1( 1510  , 0x , (0)c , 0y , (2)a , (5)a ); 

Key2(  ,
16

0 10x  , (0)c , 0y , (2)a , (5)a ); 
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Key3(  ,
0x , (0) 1c  ,

0y , (2)a , (5)a );  

Key4(  ,
0x , (0)c , 16

0 10y  , (2)a , (5)a ); 

Key5(  ,
0x , (0)c ,

0y , 16(2) 10a  , (5)a ); 

Key6(  ,
0x , (0)c ,

0y , (2)a , 16(5) 10a  ). 

(i) For the first kind of key sensitivity analysis, the 

plain-image Lena is encrypted using Mkey and six 

slightly different keys. Then we have computed the 

2D differences between the various color layers of the 

cipher image yielded using Mkey and six other cipher 

images produced using slightly different keys. The 

results are given in Table 5. The values indicate that 

all the cipher images are highly different and hence 

the cipher images produced by the proposed image 

cipher algorithm are extreme sensitivity to cipher 

keys. 

(ii) For the second key sensitivity analysis, plain-
image Lena is encrypted using Mkey, and the 

encrypted image is decrypted with six slightly 

different keys. Compared with the right decryption 

images, there are significant differences. The results 

are given in Table 6. It is clear that all the values are 

close 99 7000 , and the images decrypted using 

slightly different keys are highly different. 

 

Table 5. Key sensitivity analysis I.  

 Differences between the cipher images obtained using Mkey and 

 Skey1 Skey2 Skey3 Skey4 Skey5 Skey6 

Dr 99.6292  99.3088  99.6048  99.2996  99.6475 99.6033 

Drg 99.6048 99.5804 99.5834 99.6368 99.5911 99.5834 

Drb 99.5834 99.6048 99.5789 99.5300 99.6078 99.5972 

D 99.6292 99.6277 99.6094 99.5956 99.6109 99.5773 

Dgg 99.5743 99.6216 99.6201 99.6277 99.6231 99.6094 

Dgb 99.5773 99.6323 99.5972 99.5926 99.5834 99.6048 

Dbr 99.5667 99.6078 99.6124 99.6582 99.6704 99.6216 

Blog 99.6384 99.6475 99.6307 99.5819 99.6307 99.5773 

Dbb 99.6002 99.6140 99.6213 99.6292 99.6063 99.6033 

Table 6. Key sensitivity analysis II.  

 Differences between decrypted images obtained using Mkey and 

 Skey1 Skey2 Skey3 Skey4 Skey5 Skey6 

Dr 99.5987 99.6445 99.6399 99.5911 99.5987 99.5667 

Dgg 99.6201 99.4614 99.6155 99.4232 99.6414 99.6414 

Dbb 99.5682 99.1379 99.6078 99.1562 99.6140 99.6170 

 

VI. CONCLUSION 
 

          An efficient image encryption scheme based 

on a half-pixel-level interchange of the pixels 

between the higher plane and the lower plane among 

R, G, and B channels is proposed in the paper. The 

proposed scheme can shuffle the plain image 
efficiently in the permutation process. An effective 

diffusion process is also presented to change the 

gray values of the whole image pixels. Security 

analyses, including co-occurrence histogram, 

keyspace analysis, key sensitivity analysis, statistical 

attack analysis, and differential attack analysis, are 

performed numerically and visually. The 

experimental results show that the proposed 

encryption scheme is secure thanks to its large 

keyspace and high sensitivity to the cipher keys and 

plain images. These satisfactory properties make the 
proposed scheme a potential candidate for 

encrypting multimedia data such as images, audio, 

and even videos. 
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